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Summary	Report	on	a	Workshop	on	the	
Future	Role	of	High	Performance	
Computing	in	Medical	Product	Decision	
Making	

Abstract		
On	September	10,	2015,	Lawrence	Livermore	National	Laboratory’s	Center	for	Global	Security	Research1	
and	High	Performance	Computing	Innovation	Center2	hosted	a	workshop	in	Silver	Spring,	Maryland,	on	
the	“Future	Role	of	High	Performance	Computing	(HPC)	in	Medical	Product	Decision	Making.”	
Stakeholders	from	academia,	industry,	national	laboratories	and	government	agencies	attended	and	
discussed	the	role	of	HPC	in	making	regulatory	decisions.		This	document	summarizes	those	discussions.		
It	presents	the	benefits	and	challenges	of	the	use	of	data	driven	discovery	and	computationally	intensive	
modeling	and	simulation	that	were	identified	by	attendees,	as	well	as	potential	courses	of	action	that	
would	support	the	acceptance	and	the	adoption	of	HPC-backed	regulatory	science.		The	participants	
concluded	that	HPC	can	clearly	enable	regulatory	science,	but	several	challenges	must	be	addressed:		

• There	is	a	critical	need	for	personnel.	
• There	is	a	need	for	an	enterprise	level	business	model	for	big	data	health	analytics.	
• Confidence	building	measures	must	be	proposed	and	initiated	early	in	the	process.	
• Expand	the	role	of	uncertainty	quantification	in	the	biological	sciences	to	ensure	a	rigorous	and	

well-documented	method	of	defining	confidence	levels.	
• There	is	an	urgent	need	for	a	community	wide	forum	to	share	ideas,	best	practices	and	results.		

Introduction	
Twenty-five	years	ago,	Science	magazine	declared	the	debut	of	the	third	branch	of	science—a	means	of	
performing	“experiments”	that	would	otherwise	be	prohibitively	expensive	or	simply	impossible	to	
execute.		In	the	subsequent	quarter	century,	computer	power	has	increased	100,000	fold	and	massive	
databases	aided	by	the	ubiquitous	connectivity	provided	by	the	Internet	have	come	into	being.		Now	the	
“Fourth	Paradigm”	of	science—data	driven	discovery—is	upon	us.	

The	objective	of	regulatory	science	is	to	instill	trust	and	confidence	in	the	products	being	regulated.	
Computer	models	and	simulations	(see	the	sidebar	for	an	explanation	of	the	difference	between	models	
and	simulations)	are	intended	to	replace	expensive	and	infeasible	physical	experiments.	Historically,	
confidence	in	computer	models	and	simulations	was	provided	by	a	reliance	on	the	scientific	method—

																																																													
1	Lawrence	Livermore	National	Laboratory	-	https://cgsr.llnl.gov/	
2	Lawrence	Livermore	National	Laboratory	-	http://hpcinnovationcenter.llnl.gov/	
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models	and	simulations	were	backed	up	both	by	experimentation,	confirmation	by	multiple	research	
teams	and	peer	review.		By	contrast,	confidence	building	measures	are	exceedingly	difficult	and	often	
notably	absent	when	one	discusses	the	third	branch	and	the	fourth	paradigm,	both	enabled	by	HPC.		Is	it	
possible	for	modeling	and	simulation	to	significantly	supplement	or	even	replace	clinical	trials	without	
negatively	impacting	the	public’s	trust?		Determining	how	much	trust	to	invest	in	HPC	“black	boxes”	is	a	
complex	technical	and	social	problem.		If	the	nation	is	to	tap	into	the	enormous	potential	benefits	of	
HPC	and	advanced	models	and	simulations,	we	must	solve	the	intertwined	issues	of	uncertainty,	data	
integrity	and	trust.		

The	objective	of	this	workshop	was	to	inform	the	different	communities	of	interest	of	both	the	benefits	
and	pitfalls	of	using	HPC	for	regulatory	science.		By	initiating	a	conversation	among	all	stakeholders	as	
HPC	capabilities	mature,	the	technical	capabilities	and	regulatory	requirements	might	be	developed	in	
parallel.		“One	of	the	confounding	issues	in	translating	a	novel	discovery	into	clinical	practice	is	that	
quite	often	the	scientists	working	on…	discovery	have	limited	knowledge	of	the	analytical,	diagnostic,\	
and	regulatory	requirements	for	a	clinical	assay.”3		This	integrated	approach	would	also	provide	
guidance	to	computational	scientists	so	that	the	products	they	help	develop	will	be	compliance	ready.	
With	advanced	planning,	one	might	ensure	that	the	regulatory	process	will	capitalize	on	HPC	benefits	on	
a	timely	basis.	

The	workshop	was	structured	in	two	parts	(workshop	agenda,	appendix	A).		The	morning	session	
commenced	with	two	keynote	presentations	(appendices	B	and	C),	which	provided	a	background	for	
participants	on	current	computational	efforts	at	the	Food	and	Drug	Administration	(FDA)	and	the	state	
of	the	art	in	HPC.		These	were	followed	by	three	panel	sessions	(appendix	D)	which	provided	further	
background	in	the	areas	of	big	data,	simulations	and	applications	of	HPC	to	animal	models.	

The	second	half	of	the	workshop	was	comprised	of	two	breakout	sessions	that	examined	big	data	
analytics	and	mechanistic	models.		The	day	concluded	with	a	short	session	to	summarize	the	day’s	
discussions.	

Background	on	Medical	Product	Modeling	&	Simulation	–	Capabilities	
and	Application	(morning	session)	
Modern	super	computers	are	five	orders	of	magnitude	more	powerful	than	desktops.		To	put	this	in	
perspective,	compare	the	historical	game	PAC-MAN	(run	on	a	then	state	of	the	art	desktop	computer)	to	
current	three-dimensional,	full	physics-based,	real-time	animated	multi-person	games	that	run	on	
today’s	desktop	(about	100,000	times	faster	than	early	PCs).		Now	extrapolate	by	another	factor	of	
100,000	from	the	modern	desktop	to	a	supercomputer.		The	simulation	of	a	biological	pathway	which	
runs	on	a	workstation	can	be	transformed	into	a	full,	mechanistic	simulation	of	an	organ	when	
implemented	on	a	supercomputer.			

																																																													
3	Fuzery	et.	al.;	“Translational	of	proteomic	biomarkers	into	FDA	approved	cancer	diagnostics:	issues	and	
challenges,”	Clinical	Proteomics	2013,	10:13.		
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Experience	tells	us	that	today’s	world	class	computing	capabilities	
will	be	widely	available	in	industrial	settings	in	5–10	years,	a	time	
frame	comparable	to	a	drug	or	medical	device	development	cycle.		
Having	this	level	of	capability	means	it	is	or	will	soon	be	possible	
to:	

• Simulate	an	entire	organ	rather	than	using	mechanistic	
models	of	biological	pathways.		A	current	heart	
simulation4	uses	700	million	volume	elements	permitting	
one	to	study	drug	safety	and	to	understand	mechanisms	
of	cardiotoxicity	well	beyond	single-cell	effects.	

• Replay	computational	experiments	thus	permitting	rapid	
exploration	of	many	parameters,	including	human	
variations.	

• Investigate	cooperative	effects	of	the	use	of	multiple	
drugs	or	treatments.	

• Investigate	the	utility	of	different	medical	products.	For	
example:		

§ Optimization	of	Cardiac	Resynchronization	Therapy	
§ Tissue-lead	interface	models	and	simulations	
§ New	ablation	techniques	and	instruments	including	electromagnetic	effects	
§ New	treatment	approaches	for	atrial	fibrillation	

Consequently,	the	next	generation	of	medical	products	may	be	developed	on	corporate-owned	high-
performance	computers	with	capabilities	that	match	or	even	exceed	today’s	highest	performing	
machines.	

The	FDA	realizes	the	potential	benefits	of	utilizing	HPC	to	meet	their	regulatory	responsibilities,	and	is	
studying	how	models	and	simulations	may	beneficially	enable	the	regulation	of	medical	products.		Their	
principle	computational	initiatives	are	designed	to	exploit	the	opportunities	presented	by	the	availability	
of	multiple	large	databases—big	data.		The	opportunity	for	large	advances	clearly	exists	because:			

• Large	and	diverse	databases	are	widely	and	easily	available	to	the	public	and	corporate	
enterprise.	

• Software	tools	are	often	available	on	the	web.	
• Open	databases	on	labelling,	adverse	medical	product	effects,	genomic	sequences	etc.,	will	be	

growing	and	increasingly	available.	

Applying	advanced	analytics	to	large	databases	could	potentially	inform	many	of	FDA’s	key	
determinations,	such	as	the	safety,	effectiveness,	manufacturing	quality,	or	legality	of	the	product,	as	
well	as	where	it	is	manufactured	(domestically	or	internationally).	Current	and	future	databases	might	

																																																													
4	LLNL	heart	simulation	needs	a	reference	

For	the	purposes	of	this	
workshop	summary	we	utilize	
the	following	definitions:	
Model	-	A	collection	of	
calculations	and	algorithms	
utilized	for	analyzing	test	data,	
making	statistically	based	
inferences,	and	machine	
learning.	
Simulation	-	A	computationally	
based	reproduction	of	a	process	
or	system	based	upon	physical	
principles.	
Mechanistic	model	–	A	term	
used	interchangeably	with	
simulation.	
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contain	not	only	clinical	data,	but	also	physical	data	(e.g.	pictures	of	the	product	or	even	views	of	a	
manufacturing	site	obtained	by	drone	facilitated	inspections)	and	trade	data	(e.g.	sales	records,	supply	
chains).			

Public	availability	of	the	medical	product	data	increases	transparency	(and	consequently	trust)	between	
and	among	all	stakeholders—regulators,	industry	and	the	public.		The	FDA	has	taken	the	initiative	by	
making		much	of	their	data	accessible	in	several	open	databases.		Current	FDA	initiatives5	include:	

1. China	safety	initiative	which	develops	dashboards	and	models	to	predict	unsafe	or	ineffective	
imports	by	using	data	from	trade,	Chinese	FDA,	Chinese	media	and	FDA.	

2. precisionFDA	is	an	online,	cloud-based	portal	that	will	allow	scientists	from	industry,	academia,	
government	and	other	partners	to	come	together	to	foster	innovation	and	develop	the	science	
behind	a	method	of	“reading”	DNA	known	as	next-generation	sequencing.	

3. GenomeTrakr	network	and	Chillax—GenomeTrakr	consists	of	public	health	and	university	
laboratories	that	collect	and	share	genomic	and	geographic	data	from	foodborne	pathogens.	
The	data,	which	are	housed	in	public	databases	at	the	National	Center	for	Biotechnology	
Information,	can	be	accessed	by	researchers	and	public	health	officials	for	real-time	comparison	
and	analysis.	

4. Sentinel	aims	to	build	and	implement	an	active	surveillance	system	that	will	eventually	be	used	
to	monitor	all	FDA-regulated	products.	

5. Open	FDA	illustrates	how	HPC	can	increase	transparency.		“FDA’s	public	databases	and	a	
number	of	open	source	analytics	tools	are	hosted	by	Amazon	web	services.		The	concept	is	to	
index	high-value	public-access	data	that	is	formatted	and	documented	in	developer	and	
consumer-friendly	standards,	and	then	make	that	data	available	via	a	public-access	portal	that	
enables	developers	to	quickly	and	easily	use	it	in	applications.”6			

There	is	some	precedent	for	utilizing	computational	models	and	simulations	in	regulatory	decision	
making.		For	over	two	decades,	the	FDA	has	accepted	certain	types	of	non-clinical	drug	evaluations	for	
regulatory	purposes.		Potential	advantages	of	these	non-clinical	methods	(including	stem	cell	
assessments)	include:	

• Better	hazard	identification,	risk	assessment	and	translation	
• The	ability	to	more	easily	investigate	sub	populations	and	natural	variability	
• The	potential	to	mitigate	the	hERG	effect7	and	reduce	the	number	of	inappropriately	

discontinued	trials	of	promising	drugs	

Several	issues	and	open	questions	requiring	further	exploration	were	identified	during	the	morning	
sessions	by	the	participants:	

																																																													
5	See	appendix	B	
6	https://open.fda.gov	
7	Human	ether-a-go-go-related	gene	
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• Open	data	is	being	accessed	principally	by	simple	(non-compound)	queries.		There	appeared	to	
be	few	examples	of		advanced	analytics	that	combine	multiple	databases	to	answer	complex	
queries	or	employ	machine	learning	techniques.			

• The	data	exists	in	multiple	formats	and	types	(images,	text,	audio	and	instrumental).		Conversion	
to	compatible	formats	needs	to	be	automated.		This	is	critical	if	data	in	multiple	formats	is	to	be	
successfully	combined,	mined	and	fused.	

• Hardware,	software	and	data	scientists	are	in	short	supply.		The	community	of	data	analytics	
specialists	with	knowledge	of	medical	products	must	be	greatly	enlarged	if	in	silico	testing	is	to	
become	a	basic	tenet	of	regulatory	science.			

• Enhanced	collaboration	between	scientists,	clinicians	and	computer	scientists	is	required.	
• Regulators	will	need	to	identify	what	information	is	needed	to	validate	the	models	and	

simulations.	In	addition,	industry,	the	public	and	regulators	must	all	be	confident	and	
comfortable	with	the	“black	box.”		

• An	exemplar	case	would	be	beneficial.	HPC	efforts	in	cardio	vascular	pharmacology	may	serve	as	
a	test	case	e.g.	for	Pro-arrythmia	Risk	assessment	(CiPA)	through	scientific	evidence	will	have	to	
be	presented	that	demonstrates	that	HPC	enabled	regulatory	approval	is	as	effective	as	previous	
methods.	

• We	need	to	define	endpoints	(what	constitutes	a	beneficial	therapeutic	result?)—traditional	or	
other.	

• For	HPC-derived	data	to	supplant	(not	merely	support)	current	trials	for	clinical	and	non-clinical	
safety	assessment.	the	level	of	reliability	on	HPC-enabled	models	and	simulations	must	be	
determined.		The	commercial	sector	will	have	to	be	comfortable	with	whatever	standards	are	
eventually	implemented.	

• Models	and	simulations	must	be	fit	for	purpose,	though	it	remains	unclear	what	fit	for	purpose	
requires.	

Further	discussion:	Big	Data	Analytics	and	Mechanistic	Models	
(afternoon	session)		
	

Modeling	and	simulation	for	medical	product	regulation	naturally	divides	into	two	categories—Big	Data	
Analytics	and	Mechanistic	Models.		

• Big	data	analytics	and	statistical	models	–	drug	effects	extrapolated	from	near	neighbor	
molecules	and	chemical	compounds.		These	often	rely	upon	biomarkers	as	indicators	of	
therapeutic	effectiveness.	The	models	are	correlation	based,	often	with	minimum	or	less	than	
desirable	understanding	of	causation.	

• Mechanistic	models	–	simulations	of	biological	systems	based	upon	physics,	chemistry	and	
biology.	The	biological	mechanisms	are	simulated	with	detail	and	resolution	dependent	upon	
both	computational	resources	and	understanding	of	the	underlying	processes.	Examples	include	
simple	metabolic	or	pathway	mechanistic	models,	cellular	mechanistic	models	of	the	beating	



	

7	
	

heart,	predicting	the	binding	of	chemical	entities	to	potential	on–and–off	target	receptors	and	
the	transmission	of	efficiency	of	physical	signals	through	tissues.		These	simulations	are	
generally	causality	based,	although	the	underlying	biology	is	often	incomplete	and	uncertain.	

	Mechanistic	models	illuminate	the	underlying	processes,	but	incomplete	biology	and	natural	variation	
among	individuals	leads	to	uncertain	outcomes.		Big	data	analytics	can	point	to	favorable	biomarkers	
correlated	with	other	successful	approaches,	but	with	only	a	weak	understanding	of	causation	and	
therefor	again	uncertain	outcomes.			

As	HPC	capabilities	become	commonplace,	both	approaches	will	be	challenged	to	demonstrate	that	
computationally	enabled	decisions	are	backed	by	strong	scientific	evidence.		The	methods	that	might	be	
utilized	to	provide	confidence	in	both	mechanistic	models	and	big	data	analytics	have	some	similarities	
(transparency,	repeatability,	the	need	for	uncertainty	analysis	and	the	ability	to	deal	with	natural	
variability)	and	some	differences	(physical	fidelity	vs.	statistical	justification	and	the	accuracy	and	
curation	of	the	underlying	“big”	public	and	proprietary	databases).		

Big	Data	Analytics	
	

According	to	the	National	Science	Foundation,	the	phrase	big	data	“refers	to	large,	diverse,	complex,	
longitudinal,	and/or	distributed	data	sets	generated	from	instruments,	sensors,	Internet	transactions,	
email,	video,	click	streams,	and/or	all	other	digital	sources	available	today	and	in	the	future.”8	Big	data	in	
health	care	might	include	results	of	longitudinal	studies,	medical	product	information,	electronic	health	
care	records,	patient	data,	x	rays	and	other	instrumental	data,	social	data	and	even	mobile	data.			
McKinsey	Global	Institute	estimates	that	applying	big	data	to	better	inform	decision	making	in	health	
care	could	be	worth	$100	billion	per	year.9		The	participants	discussed	the	obstacles	that	must	be	
overcome	if	the	full	potential	for	big	data	in	support	of	medical	product	decision	making	is	to	be	
realized.	

The	points	highlighted	during	the	discussion	of	big	data	were	as	follows:	

1. There	is	a	need	to	formulate	and	promulgate	standards	for	data	(both	reference	data	and	
“fluid”	data—data	generated	by	users	of	big	data	analytics),	metadata,	actionable	knowledge	
and	bioinformatics.			

Some	outstanding	issues	identified	are	as	follows:	

a. Analytics	engines	may	need	their	quality	control	standards	if	they	are	used	to	access	the	quality	
of	big	data	and	metadata.	

																																																													
8	National	Science	Foundation	program	solicitation		for	Core	Techniques	and	Technologies	for	Advancing	Big	Data	
Science	&	Engineering	(BIGDATA),	June	2012;	http://www.nsf.gov/pubs/2012/nsf12499/nsf12499.pdf		
9	McKinasey	and	Company	–	
http://www.mckinsey.com/insights/health_systems_and_services/how_big_data_can_revolutionize_pharmaceuti
cal_r_and_d	
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b. A	suitable	authorized	organization	(either	the	government	with		full	regulatory	authority	or	a	
consortium	in	an	advisory	capacity)	should	set	and	maintain	these	standards.	

c. This	function	may	be	part	of	an	enterprise	business	model	(see	point	6).	

Nomenclature,	ontology,	methods	of	normalization	and	data	formats	need	to	be	standardized	to	
help	realize	database	interoperability.	The	quality	of	public	database	data	varies,	and	there	is	a	need	
for	a	curation,	quality	control	and	clear	exposition	of	data	provenance.			

	
2. Ensuring	privacy	while	maximizing	the	utility	of	the	data	was	considered	to	be	a	major	

challenge.			
	

Some	outstanding	issues	identified	are	as	follows:	

a. The	demographic	distribution	(young	vs.	old,	veterans	vs.	civilians,	etc.)	of	those	willing	to	
share	health	data	requires	consideration	when	applying	big	data	to	regulatory	actions.	

b. The	utilization	of	different	data	types	(genetic,	electronic	health	records,	personal	data	and	
mobile	data)	might	benefit	from	having	different,	data-specific	consent	forms.	

c. Access	to	and	ownership	of	such	patient	data	by	FDA,	the	National	Institute	of	Health,	
pharma,	hospitals,	medical	researchers	and	patients	themselves	must	be	determined.		

d. The	Health	Insurance	Portability	and	Accountability	Act	of	1996	(HIPAA)	and	the	Common	
Rule	need	to	be	reexamined	and	modified	so	that	the	U.S.	regulatory	environment	can	be	
made	consonant	with	the	era	of	big	data	analytics.	

	
Current	European	regulators	are	apparently	moving	towards	open	health	consents	(opt	out)	
while	the	U.S.	seems	to	be	moving	in	the	opposite	direction	(opt	in).10		Integrating	research	data	
with	clinical	data	could	be	particularly	challenging	when	the	need	for	anonymization	and	de-
identification	is	considered.	The	details	will	depend	on	the	chosen	infrastructure	and	
architecture	(see	point	6).		

	
3. There	is	a	need	to	disseminate	success	stories.	In	order	to	advance	discussion,	gain	the	public’s	

confidence,	and	prove	the	ability	for	models	to	provide	evidence	of	safety	and	efficacy	to	
stakeholders,	examples	of	expedited	product	delivery	and	reduced	development	costs	should	be	
promulgated.			

	
4. The	lack	of	trained	information	scientists	and	professional	software	development	processes	

(codes	are	often	developed	by	students	and	never	documented	or	maintained)	was	
acknowledged	as	a	major	stumbling	block.		Instituting	formal	exchange	programs	whereby	
professionals	could	for	brief	periods	move	between	intuitions—academia,	government	and	
industry—was	viewed	as	an	excellent	means	by	which	data	scientists	could	gain	experience	in	all	

																																																													
10	It	was	pointed	out	that	this	seems	to	be	a	reversal	of	the	two	positons	on	internet	privacy	
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facets	of	regulatory	science	and	HPC,	thereby	appreciating	the	issues	native	to	other	
organizations.	

	
5. It	was	noted	that	different	data	business	models	are	utilized	within	the	USG.	NIH	follows	an	

integrated	model	organized	around	big	data	centers	with	significant	sharing	across	components	
while	the	FDA	is	vertically	integrated.		It	was	suggested	that	the	FDA	might	benefit	from	having	a	
horizontal	bioinformatics	capability.	

	
6. Many	of	the	issues	can	be	consolidated	within	the	context	of	a	need	for	an	enterprise	level	

business	model.		Options	included	a	federated	database11	versus	a	single	centralized	database.					
The	federated	data	system	reduces	the	complications	that	accompany	moving	and	securing	
large	databases,	while	centralized	systems	have	a	computational	advantage	if	large	HPC	
platforms	are	required.		Federated	systems	also	help	ameliorate	ownership	options	while	
centralized	systems	might	exacerbate	them	if	economies	of	scale	lead	to	a	small	number	of	large	
commercial	systems	resulting	in	limited	competition	and	increased	costs	to	database	clients.		A	
public–private	partnership	in	which	the	government	seeds	the	effort	with	data	and	academia	
and	industry	provide	community	based	analytics	is	another	possible	option.		The	FDA	(medical	
devices)	is	moving	in	this	direction.		An	associated	issue	is	data	curation—clearly	federated	and	
centralized	systems—will	need	different	procedures	to	document	the	provenance	and	assure	
the	integrity	and	accuracy	of	data.		Community-based	algorithms	will	also	need	to	be	curated	
and	tested.		One	method	is	to	test	algorithms	against	standardized	“golden	data”	databases	
before	testing	them	on	real	data.		The	scope	of	algorithmic	validation	(pipeline	vs.	algorithmic)	
may	differ	depending	on	the	user	base	and	needs.		A	business	model	would	provide	a	structured	
framework	to	formulate	and	analyze	these	options.	

Mechanistic	models	
	

A	mechanistic	model	of	a	medical	product	is	a	simulation	of	physiological	function	based	upon	physical	
principles—kinetics,	fluid	transport,	mechanics,	electro-magnetics,	chemical	potentials,	material	
properties,	to	name	a	few.		Mechanistic	models	have	had	enormous	success	in	simulating	complex	
systems,	everything	from	airplanes	to	nuclear	weapons,	and	are	beginning	to	be	accepted	by	the	FDA	as	
providing	evidence	of		the	safety	and	efficiency	of	medical	devices.12		However,	the	totality	of	systems	
within	the	human	body	comprise	perhaps	the	most	complicated	“system	of	systems.”		Many	of	these	
underlying	processes	and	pathways	are	ill	defined	and	unknown.		Nevertheless,	rapid	progress	is	being	
made	to	understand	these	systems,	and	the	potential	impact	of	HPC	on	physiological	simulations	is	
enormous.		The	participants	considered	issues	related	to	the	use	of	mechanistic	models	to	reduce	
approval	costs	and	expedite	regulatory	processes	while	preserving	and	enhancing	the	safety	of	medical	

																																																													
11	“A	federated	database	system	is	a	type	of	meta-database	management	system	(DBMS),	which	transparently	
maps	multiple	autonomous	database	systems	into	a	single	federated	database.	The	constituent	databases	are	
interconnected	via	a	computer	network	and	may	be	geographically	decentralized.”	Wikipedia	
12	The	MRI	compliant	pacemaker	is	a	case	in	point	
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products.		The	undetermined	future	of	HPC-based	mechanistic	models	in	medical	product	regulatory	
scienceis	an	outstanding	issue.		These	simulations	may	also	impact	the	use	of	animal	models	and	clinical	
trials.			

The	points	highlighted	during	the	breakout	sessions	were	as	follows:	

1. The	potential	benefits	of	HPC	to	enable	physiological	simulations	are	many	and	varied.		The	
rapidity	and	ability	to	repeat	trials	and	test	hypothesizes	across	many	and	varied	parameters,	
populations	and	sub-populations	were	often	mentioned	as	a	critical	advantage	of	in-silico	
testing.		Early	screening	for	adverse	drug	effects	by	simulations	could	reduce	the	size	and	cost	of	
clinical	trials	leading	to	accelerated	development.	This	could	be	an	advantage	for	identifying	and	
qualifying	biomarkers.			
	
Mechanistic	models	may	also	be	particularly	suited	for	extrapolating	product	effects	from	
narrow	trial	populations	to	a	more	representative	and	complete	demographic	(however,	see	
cautions	below).		Simulations	could	also	help	explore	a	drug’s	impact	across	the	full	natural	
variability	of	the	human	species,	capturing	the	tails	of	the	population	distribution	function,	
which	is	often	undetected	in	even	the	largest	and	costliest	clinical	trials.		These	simulations	
might	help	ameliorate	the	known	difficulty	(and	consequent	risk)	of	moving	from	animal	models	
to	humans—human	disease	pathways	differ	significantly	from	those	of	animals.		Finally,	HPC-
supported	mechanistic	models	might	enable	scientists	to	extrapolate	from	results	obtained	on	
well	characterized	populations	to	those	about	which	there	is	a	paucity	of	data.		
	
The	simulations	are	not	only	useful	for	broadening	the	scope	of	testing,	but	they	could	also	be	
critical	in	the	development	of	personalized,	individually	targeted	medicine.		One	could	imagine	
introducing	the	mechanistic	models	into	a	clinical	setting—creating	a	customized	virtual	heart	
for	every	patient	leading	to	patient	specific	strategies	and	treatments.	

	
2. Along	with	the	benefits,	workshop	participants	identified	a	multitude	of	cautions	that	must	be	

considered	as	the	community	attempts	to	incorporate	massive	mechanistic	models	into	the	
regulatory	process.			
	
Some	outstanding	issues	identified	are	as	follows:	

a. Though	healthy	heart	simulations	have	proved	accurate,	these	mechanistic	models	may	
not	represent	unhealthy	hearts	well.	

b. In	the	existing	simulations	some	pathologies	are	well	known,	but	lesser-known	
conditions	may	not	be	described.	

c. Many	simulations	predict	typical	or	average	heart	behaviors	but	it	is	not	known	how	
they	will	represent	behavior	variability	within	large	populations.	

d. These	simulations	provide	time-critical	data	but	the	complexity	of	these	tools	may	
hinder	potential	users	unfamiliar	with	HPC.	
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Many	of	the	benefits	listed	above	can	also	be	considered	reasons	to	be	cautious.	Recently,	a	
number	of	extensive	healthy	heart	simulations	have	been	developed,	but	these	simulations	may	
not	accurately	represent	unhealthy	hearts.		Part	of	the	difficulty	is	the	very	nature	of	biological	
systems	and	the	number	of	unknowns.		Current	simulations	can	be	over	parameterized	for	an	
environment	with	so	many	unknowns—pharmacokinetic–pharmacodynamic	(PK–PD)	
simulations	may	have	20–30	parameters.		There	are	too	many	“knobs”	without	sufficient	data	to	
accurately	set	them.		The	simulations	must	deliver	reproducible	results	in	a	reasonable	amount	
of	time.		Given	the	technical	complexity	of	HPC,	users	unfamiliar	with	HPC	may	experience	
difficulty	operating	these	tools.	
	
Finally,	although	it	is	essential	to	follow	the	scientific	method	carefully,	it	is	not	clear	how	that	
might	be	accomplished	when	one	is	trying	to	validate	human	physiological	simulations.		There	is	
currently,	and	there	is	likely	to	remain	for	some	time	much	less	validating	data	is	available	for	
these	simulations	than	is	typically	available	for	physics	or	engineering	mechanistic	models.	More	
might	be	done	with	the	data	currently	available	if	there	was	more	cooperation	within	the	
community	(see	below).		Even	the	verification	(confirmation	of	proper	implementation	and	
execution	of	the	specified	algorithms)	of	a	simulation	running	on	a	high-performance	computer	
is	a	highly	specialized	and	complex	task.	
	

3. There	is	a	need	for	more	coordination	between	clinicians,	experimental	biologists	and	
mechanistic	model	developers.			
	
Some	outstanding	issues	identified	are	as	follows:	
		

a. The	most	effective	scale	for	mechanistic	models	and	confirming	experiments,	local	or	
global	scale	(i.e.	simulating	the	transmission	of	an	electromagnetic	wave	across	the	
heart	or	searching	for	regional	heart	disruptions)	is	unclear.	

b. Mechanistic	models	could	be	made	to	help	simulate	single	systems	or	to	understand	
cross-system	interactions,	though	it	is	undetermined	which	would	be	most	applicable.	

c. Mechanistic	model	developers	must	make	their	needs	for	validating	experiments	and	
data	clearly	known	to	industrial	scientists	who	may	possess	the	data.	
	

The	scientific	method	is	rooted	in	the	concept	of	conducting	experiments	specifically	designed	
to	test	hypothesizes.		When	theories	concern	very	complicated	systems	with	scores	of	
confounding	factors,	this	can	be	a	difficult	proposition.		Typically,	the	complexity	is	tackled	by	
simplifying	early	experiments	and	increasing	complexity	as	confidence	in	the	simulations	and	
hypothesis	is	gained,	but	to	date	precious	few	experiments	have	been	conducted	with	the	goal	
of	guiding	and	validating	physiological	simulations.13		These	considerations	prompted	a	
discussion	of	the	appropriate	scale	for	mechanistic	models	and	confirming	experiments.			HPC	

																																																													
13	For	example	might	you	confirm	in	silico	simulations	with	stem	cell	derived	myocytes?	
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simulations	should	be	able	to	guide	the	design	of	validating	experiments,	and	they	themselves	
should	be	constructed	with	the	need	for	validating	experiments	as	a	requirement.	
	
Though	a	large	amount	of	potentially	applicable	diseased	animal	model	information	is	available,	
the	available	data	is	not	yet	being	extensively	utilized	for	simulation	verification.		The	extensive	
body	of	research	with	rabbit	models	might	be	a	first	step	to	simulation	validation	and	testing,	
although	the	experiments	that	have	been	conducted	have	not	been	designed	with	the	express	
intent	of	validating	simulations.		Given	the	lack	of	data	and	the	wide	range	of	only	marginally	
known	parameters,	it	was	suggested	that	there	could	be	a	large	role	for	uncertainty	
quantification	(UQ)	in	the	verification	and	validation	of	medical	product	mechanistic	models.			A	
first	step	is	to	create	a	simulation	framework	that	incorporates	a	UQ	level	of	rigor,	beginning	
with	physics-based	models.		This	framework	will	require	input	from	industrial	and	academic	
researchers.		UQ	is	likely	to	be	critical	in	a	regulatory	framework	relying	on	HPC-based	
simulations,	however	UQ	applied	to	biological	systems	is	in	a	nascent	state.			
	
More	coordination	and	communication	between	the	simulation	developers	and	the	
experimental	community	would	help	address	the	lack	of	validation	data.	Communication	
between	experimentalists,	mechanistic	model	developers,	and	industrial	scientists	could	make	
more	data	available	to	simulators.		
	
Part	of	the	problem	may	be	that	there	is	not	yet	a	critical	mass	of	scientists	and	organizations	
with	the	skill	to	support	HPC-based	physiological	modeling.		It	might	help	if	simulations	were	
developed	that	could	be	utilized	by	non-HPC	scientists.		As	code	developers	build	their	
simulations,	this	should	also	be	considered	a	requirement.		

	
4. The	appropriate	use	for	HPC-enabled	simulation	at	each	stage	of	the	“womb-to-tomb”	process	

is	unclear.			
	
Some	outstanding	issues	identified	are	as	follows:	
	

a. When	following	steps	associated	with	medical	product	regulatory	approval,	it	is	
essential	to	determine	at	each	step	the	minimum	validation	requirements,	when	HPC	
could	be	used	to	augment	clinical	data,	and	how	these	considerations	might	evolve	over	
time	as	simulations	advance	and	confidence	in	in	silico	testing	increases.	

b. Particular	steps	in	the	validation	process	may	be	best	matches	to	in	silico	based	
decisions.	
	

The	regulatory	process	is	carefully	proscribed	with	many	steps	to	be	completed	before	(and	
even	after)	a	medical	product	is	approved.		For	initial	attempts,	a	specific	focus	using	HPC	on	a	
single	step	may	help	build	confidence	in	the	benefits	of	simulation.		One	suggestion	was	to	use	
biomarker	qualification	as	low	hanging	fruit	that	might	both	show	the	advantages	and	issues	
that	need	to	be	resolved.		Another	might	be	to	demonstrate	the	ability	to	predict	the	behavior	
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of	a	simple	physiological	subsystem	that	can	be	expanded	to	more	complex	systems.		An	
example	would	be	the	current	efforts	to	simulate	the	propagation	of	electrical	currents	through	
the	ventricles,	eventually	building	a	full	human	heart	that	provides	measures	of	force	and	
pressure	that	reproduce	known	drug	effects.	
		

5. Ultimately,	the	success	or	failure	of	using	HPC	to	support	medical	product	decisions	is	all	about		
confidence—confidence	of	the	regulators	in	the	evidence	submitted	by	the	regulated,	
confidence	of	the	scientists	(modelers,	testers	and	other	health	professionals)	in	the	
simulations	and	public	confidence	in	the	regulators.			
	
Some	outstanding	issues	identified	are	as	follows:	
	

a. Confidence	in	using	HPC	to	validate	medical	research	must	be	gained	without	
undermining	confidence	in	previous	procedures.	

b. The	most	capable	person(s)	to	present	HPC’s	benefits	and	reduced	risks	must	be	
identified.	

	

The	question	becomes	one	of	who	should	make	the	case	for	using	HPC	to	support	medical	
applications	and	how	it	would	be	best	accomplished.		Convincing	the	technical	community	may	
require	more	rigor	than	the	public	or	even	health	professionals.			What	lessons	might	be	learned	
from	in	silico	testing	in	the	aviation	or	nuclear	weapons	sectors?		Maximum	transparency	and	
data	sharing	is	certainly	required,	but	those	who	are	privy	to	this	information—regulators,	
independent	peer	reviewers	or	competitors—must	be	identified.		Parts	of	simulations	must	be	
left	opaque	to	preserve	IP.		

A	paradigm	shift	will	be	required,	either	evolutionary	or	revolutionary.		Many	workshop	
attendees	felt	a	gradual	approach	to	confidence	building	was	best;	one	should	carefully	choose	
the	context	of	use	of	the	first	simulations	and	products.		An	early	and	continuous	dialogue	
between	all	parties	(researchers,	product	developers	and	clinicians)	and	the	FDA	is	essential	if	
first	steps	are	not	to	become	the	last.		

Summary:	
HPC	can	support	and	enable	regulatory	science.		The	benefits	are	many	and	substantial,	but	in	order	for	
them	to	be	realized	in	a	timely	manner,	several	challenges	must	be	met:		

1) There	is	a	need	for	manpower	to	support	these	developments.	
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a. Data	analytics	personnel	with	knowledge	of	medical	products	and	regulatory	
science	are	in	short	supply.		An	exchange	program	(“sabbaticals”	or	IPAs14)	
between	the	regulatory	agencies,	academia	and	industry	would	start	the	process.	

b. Researchers,	clinicians	and	computer	scientists	need	to	engage	in	more	
communication	and	collaboration.		Annual	workshops	are	necessary	but	not	
sufficient.		A	continuing	(perhaps	web-based)	community	of	interest	for	HPC-
enhanced	regulatory	science	should	be	established.	

2) There	is	a	need	for	an	enterprise-level	business	model	for	big	data	health	analytics.	
a. The	pros	and	cons	of	a	federated	or	integrated	system	must	be	evaluated.			
b. Privacy	and	ownership	issues	must	be	addressed—HIPPA	and	the	common	rule	

need	to	be	reexamined	in	a	world	of	big	data	analytics.	
c. Data	formats	need	to	be	standardized—who	is	in	charge?		Which	organization—

government,	non-governmental,	or	even	commercial—should	take	the	lead?		
3) Confidence	building	measures	must	be	proposed	and	initiated	early	in	the	process.	

a. Start	slowly—find	some	“low	hanging	fruit”	and	expand.		One	possibility	is	
qualifying	biomarkers	or	demonstrating	the	ability	to	predict	behavior	of	a	simple	
physiological	subsystem	that	can	be	expanded	to	more	complex	systems.			

b. The	early	uses	of	HPC	have	to	be	at	least	as	good	(safety	and	efficacy	evaluations)	
as	current	methods.		Where	in	the	“womb-to-tomb”	regulatory	process	is	the	
appropriate	starting	point	for	HPC-based	mechanistic	models?	

c. Success	stories	need	to	be	widely	disseminated	in	order	to	advance	the	discussion	
and	gain	confidence.		Transparency	and	professional	debate	among	scientists	is	
essential.	

d. Follow	the	scientific	method	to	establish	an	evidence-based	protocol	and	maintain	
confidence	in	the	results.		This	will	require	purpose-designed	experiments	for	
hypothesis	testing	and	validation.	

e. Expand	the	role	of	uncertainty	quantification	in	the	biological	sciences	to	ensure	a	
rigorous	and	well	documented	method	of	defining	confidence	levels.	
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Outline 
• HPC  

• Current FDA activities that could be advanced 
with HPC 

• State of these HPC activities 

• What would it take to enhance current FDA 
activity with an HPC-enabled activity? 

2 

Important Disclaimer: this presentation has not been 
cleared as official FDA policy and may be incomplete.   
It is merely intended to spark ideas and discussion. 



High Performance Computing (HPC) 
• HPC involves 

 Hardware: more nodes, faster, bigger 

 Software: faster, shortcuts 

oOpen source: mix and match modules, clever 

 Data scientists in short supply 

• HPC enables 

 Speed 

 Big data (no sampling!) 

 Complex algorithms 

 “Citizen” analysts 
3 



HPC Resources on Internet 

• Data: GenBank 

• Application Programming Interfaces: openFDA 

• Computation sites: 
http://app.raw.densitydesign.org/#%2F  

• Downloadable free, open code 

 Pipelines: Python Luigi 

 Analytics: R 

• Generally no expectation of privacy 

 PrecisionFDA will allow user to select level 

4 



Future of HPC Resources on Internet 

• Patient-provided shared data (beyond electronic health records) 
will grow in amount and relevance. 

• Open reference databases will be more relevant: 

 Registration and Listing 

 Labelling 

 Substances 

 Body components and functions 
 

• Linkages across databases will exponentially increase computing 
demand. 

• To deal with text, signals, and images will need to either: 

 Automatically code it to standards, or 

 Automatically use its meaning without standardization 
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 Health conditions 
 Whole Genome Sequences 
 ClinVar/Gen 
 Current knowledge 
 Untested hypotheses 

 



FDA activities that could be enhanced with HPC 
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Relative to medical products (MP), FDA mission is to protect and 
promote public health by advancing regulatory science 
 
FDA activities revolve around questions: 
 

1. Who makes MP, where (US)? 
2. Who makes MP, where (non-US)? 
3. Is MP legal? 
4. Is MP labelling legal? 
5. Is MP made properly? 
6. Is MP safe? 
7. Is MP effective? 
8. Is new moderate risk MP like a legal MP? 
9. Is new risky MP safe and effective? 

 



FDA activities to address the questions 
Activities (all pre-date computing) 

 

• Manufacturers register, and list their MP, 
with FDA 

• FDA inspects manufacturer’s site 

• FDA inspects/studies MP 

• FDA controls MP imports 

• FDA reviews submissions to market a new 
MP that is like a currently marketed MP 

• FDA reviews submissions to market a new 
novel MP 

• FDA orders or conducts a post-marketing 
study 

• FDA reviews reports 

• FDA investigates outbreaks 

• FDA reviews labelling 
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Questions 
 
1. Who makes MP, where 

(US)? 
2. Who makes MP, where 

(non-US)? 
3. Is MP legal? 
4. Is MP labelling legal? 
5. Is MP made properly? 
6. Is MP safe? 
7. Is MP effective? 
8. Is new moderate risk MP 

like a legal MP? 
9. Is new risky MP safe and 

effective? 



Data that could help FDA answer the questions  
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1. MP supply chain 
2. Manufacturer credit records 
3. Global trade data 
4. MP sales, commerce records 
5. MP advertising, any media 
6. Crowdsourced data about manufacturers 
7. State/local records of businesses 
8. Registration and listing from foreign governments 
9. FDA registration and listing 
10. Post-marketing site inspection data 
11. Drone-collected data at site inspection 
12. Marketed MP inspection data 
13. Photos of MP 
14. Spectral data acquired regarding MP 
15. Import records 



Data that could help FDA answer the questions  
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16. NGS data from outbreak-related specimens 
17. NGS data from specimens collected at a US port 
18. NGS-based in-vitro diagnostic device: data 
19. NGS-based in-vitro diagnostic device: code 
20. MP maintenance records 
21. MP use records 
22. Pre-clinical data collected for MP development 
23. Clinical data collected for MP development 
24. Data unreleased by manufacturer 
25. Healthcare data 
26. Post-marketing reports 
27. Published scientific reports 
28. Good Manufacturing Practices  guidance 
29. Manufacturing process in premarket submissions 

HPC is useful or necessary to use these data  



All data types 
1. MP supply chain 
2. Manufacturer credit records 
3. Global trade data 
4. MP sales, commerce records 
5. MP advertising, any media 
6. Crowdsourced data about manufacturers 
7. State/local records of businesses 
8. Registration and listing from foreign governments 
9. FDA registration and listing 
10. Post-marketing site inspection data 
11. Drone-collected data at site inspection 
12. Marketed MP inspection data 
13. Photos of MP 
14. Spectral data acquired regarding MP 
15. Import records 
16. NGS data from outbreak-related specimens 
17. NGS data from specimens collected at a US port 
18. NGS-based in-vitro diagnostic device: data 
19. NGS-based in-vitro diagnostic device: code 
20. MP maintenance records 
21. MP use records 
22. Pre-clinical data collected for MP development 
23. Clinical data collected for MP development 
24. Data unreleased by manufacturer 
25. Healthcare data 
26. Post-marketing reports 
27. Published scientific reports 
28. Good Manufacturing Practices  guidance 
29. Manufacturing process in premarket submissions 

Questions 

Links between the questions and all the listed data  
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Physical data types 
 

Post-marketing site inspection data 
 

Drone-collected data at site  
inspection 
Marketed MP inspection data 
 

Photos of MP 
Spectral data acquired regarding MP 
 

Import records 
NGS data from outbreaks 
NGS data from specimens - US port 
NGS-based in-vitro diagnostic  
device: data 
NGS-based in-vitro diagnostic  
device: code 
Pre-clinical data for MP development 
 

Clinical data for MP development 
 

Data unreleased by manufacturer 
 

Published scientific reports 

Questions 

Links between the questions and physical data  
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Trade data types 
 

MP supply chain 
 

Manufacturer credit records 
 

Global trade data 
 
MP sales, commerce records 
 

MP advertising, any media 
Crowdsourced data about manufacturers 
State/local records of businesses 
Registration and listing from foreign governments 
FDA registration and listing 

Import records 
 

MP maintenance records 
 
 

MP use records 
 

Data unreleased by manufacturer 

Questions 

Links between the questions and trade data  
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Questions Clinical data types 
 
 
 

MP sales, commerce records 
 
 
 

MP maintenance records 
 
 
 

MP use records 
 
Clinical data collected for MP  
development 
Data unreleased by manufacturer 
 

Healthcare data 
 

Post-marketing reports 
 

Published scientific reports 

Links between the questions and clinical data  
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State of HPC activities at FDA 
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Activity Current state 

China Safety 
Initiative 

Developing dashboards and models to predict unsafe or 
ineffective imports, using data from trade, Chinese FDA, 
Chinese media, and FDA 

openFDA • API of large data (two with >4million records each) 
• >100 processes/sec (designed up to 300/sec) 

precisionFDA In closed beta to develop a cloud platform to exchange/ 
leverage expertise regarding genomics tests 

GenomeTrakr and 
Chillax 

Has shortened time to resolve an outbreak from 12 days to 
a few hours (can scale to 100Ks nodes). 

Sentinel Initiative Restructuring electronic health records from very big 
healthcare providers into standardized and easily usable 
distributed databases for over 175m US population 



China Safety Initiative: Global Landscape Analysis 

Weather/Environment 
signals 

Open Source / Social 
Media Alerts 

Risk 
Driver/Supply 
Chain Analysis 

Integrated Data Platform 
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OpenFDA promotes data sharing, data access, and transparency in our regulatory 
and safety processes, and spurs innovative ideas for promoting public health. 

Three Components of Transparency and Visibility  

Open  
Source 

Open  
Community 

Open  
Data 

For Drugs:  
Adverse Event Reports 

Labeling 
Recalls 

Consumer-Focused Apps 
Researchers 

Clinicians 
API Connections 
StackExchange 

#openFDA on Twitter 

FDA on Github 
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For Medical Devices: 
Classification 

Registration and Listing 
510(k)s 
PMAs 

Adverse Event Reports 
Recalls 

Food Recalls 



OpenFDA Datasets 

Unique APIs were developed in FY 2014-15 for readily available datasets (#s as of Aug 2015): 
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Product Data Timeframe # of records 

Drug Labeling Current 55K 

Adverse event reports Since 2003 4.9M 

Recalls Since 2012 4K 

Medical device Classification Current 6K 

Registration & Listing Current 24K establishments 
>100K devices 

510(k)s (including de novos) Since 1976 141K 

PMAs (including supplements) Since 1977 30K 

Adverse event reports Since 1991 4.2M 

Recalls Since 2002 9.5K 

Food Recalls Since 2012 8.5K 



 Open Source Logical Architecture 

  

Data portable to other software. Data/ software portable to other platforms. 

URL-format 
Query 
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Public 

API 
Umbrella 

Response https Amazon Elastic 
Load Balancer 

Source Code Repository 

node.js 

search 

StackExchange 

Q & A 
Community 

 
Content 
Storage 

https 



• >20M API calls 
• 6000 registered users 

Romania 
Hungary 

Greece 

Cyprus 

Ukraine 

Lithuania 

Croatia 
Moldova 

Serb. Mont. 

Germany 

Switzerland 

Gibraltar 

Austria 
Lux. Slovakia 

Sweden 

Finland 
Norway 

France 

Spain 

Poland 

Italy 

Belarus 

United Kingdom 
Latvia 

Ireland 

Bulgaria 

Estonia 

Portugal 

Denmark 

Andorra 

Netherlands 

Belgium Czech Rep. 

Albania 
Macedonia 

Iceland 

Syria 

Kuwait 

Qatar 

Guam 

Palau 

Micronesia 

Christmas Is. 

Wake I. 

Marshall Is. 

Maldives 

Russia 

China 

Australia 

India 

Iran 

Kazakhstan 
Mongolia 

Saudi 
Arabia 

Turkey 

Iraq 

Pakistan 

Myanmar 

Afghanistan 

Uzbekistan 

Turkmenistan 

Thailand Yemen 

Japan 

Oman Laos 

Vietnam 

Nepal 

Kyrgyzstan 

Azerbaijan 
Tajikistan 

New Zealand 

Papua New Guinea 

Jordan 

North Korea 

Indonesia 

Malaysia 

Bangladesh 

South Korea 

Bhutan 

Sri Lanka 

Taiwan 

New Caledonia 

Philippines 

Solomon Is. 

Vanuatu 

Israel 

U.A.E. 

Bahrain 

Lebanon 

Georgia 

Armenia 

East 
Timor 

Cambodia 
Benin 

Congo 

Liberia 

Canary Is. 

Gabon 

Togo 

Rwanda 

Cape Verde 

Seychelles 

Algeria 

North 
Sudan 

Libya 

Mali 

Chad 

Niger 

Egypt 

Angola 

Dem. Rep. 
Congo 

Ethiopia 

South 
Africa 

Nigeria 

Namibia 

Mauritania 

Zambia 

Tanzania 

Kenya 

Somalia 

Botswana 

Mozambique 

Morocco 

Madagascar 

Cameroon 

Zimbabwe 

Ghana 
Guinea 

Tunisia 

Uganda 

Cote 
d'Ivoire 

Senegal 
Burkina Faso 

Western Sahara 

Eritrea 

Malawi 

Swaziland 

Lesotho 

Cen. Afr. Rep. 
Sierra Leone 

Guinea-Bissau 

The Gambia 

Equat. Guinea 

Burundi 

Djibouti 

Comoros 

Falkland Is. 

Suriname 

Brazil 

Argentina 

Peru 

Chile 

Bolivia 

Colombia 

Venezuela 

Paraguay 

Uruguay 

Ecuador 

Guyana 

French Guiana 

Trinidad & Tobago 

Samoa 

French Polynesia 

Cook Is. 

Galapagos Is. 

Honduras 

Nicaragua 

The Bahamas 

Hawaii 

Bermuda 

Midway Is. 

Canada 

United States 

Mexico 

Cuba 

Panama 

Haiti Puerto Rico 
Dominican Rep. 

Guatemala 

Belize 

El Salvador 

Costa Rica 

Greenland 

South 
Sudan 

>½ of all API calls were from outside the US 

• >20,000 connected IP addresses 
• Dozens of new software (mobile or web) apps 

Since going live on June 2, 2014 
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Data D 

Results R 

Reference  
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Public 

Precision Medicine: Eco-System 

A 

B 

C 

5 

A 

B 

C 

Lab offers the test by sequencing the samples 
but outsources bioinformatics analysis 

Lab performs analysis for 
labs that sequence 
samples 

Lab sequences 
the samples and 
does their 
pipelines and 
analyses 



PrecisionFDA: Community Resources 

Community Wiki (Q&A forum) 
Social 

Media 
Open Source 

Repository 

The main goal is to build a strong (and self-correcting) 

community… 

9 



GenomeTrakr 

External health labs and 
10 FDA field labs 

Pathogens’ genome sequences 

1. Compare 
sequences with 
those at NCBI 

3. Submit new 
data to NCBI 

Infectious outbreak samples 

2. Find outbreak 
root cause 



Chillax 

1. Compare  pathogens’ 
sequences with those at 
NCBI 

Q: Can the same analysis (#1 above) be done in the cloud? 
A: Yes. 
 
Q: Is the same analysis faster in the cloud than in the CFSAN HPC? 
A: Yes. ~ 1/18th the time.  Cost of $0.5 to $1.0 per isolate. 



Sentinel Initiative 

• Response to 2007 FDA Amendments Act (FDAAA) 
mandate: 

• establish a system for active surveillance of drugs 

• use electronic data from healthcare  data holders   

• Goal: build and implement a new active 
surveillance system that will eventually be used 
to monitor all FDA-regulated products. 

24 



Sentinel Initiative 

• Pilot: Mini-Sentinel 

• FDA provides funds and makes decisions 

• Academic partners: 15 
• Planning, operations 

• Methods, protocol development 

• Data partners: 18, with <175M patients 

• Has completed dozens of assessments on: 

• Exposures to medical products 

• Diagnoses and procedures 

• Outcomes among those exposed to medical products 

• Impact of FDA actions 

25 



What would it take to enhance a current 
FDA activity with an HPC-enabled activity? 

• Scientific evidence that HPC-enabled activity is at 
least as good (in terms of conclusions and both 
types of errors) as old activity 

• Emotional comfort with “black box” 
computations 

• Focus on a few (1-3) win-win use cases to 
demonstrate HPC utility 
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Dept. of Energy leads the world in computing 

2014


#1	
  US	
  

Desktop	
  



Modern supercomputers are five orders of magnitude more 
powerful than desktop computers 

Enables simulation 100,000X more realistic than possible on a desktop  

§  98,304 nodes 

§  1,572,864 cores 
§  0 GPUs 
§  20 PFlop/s peak 

§  1.6 PB memory 

§  9.6 Megawatts 

“Titan” (Cray XK7 ORNL) “Sequoia” (IBM BG/Q LLNL) 

§  18,688 nodes 

§  299,088 cores 
§  18,688 GPUs 
§  27 Pflop/s peak  

§  0.7 + 0.1  PB memory 

§  8.2 Megawatts 



Not 100,000 times faster? 



Parallel Overhead 



Parallel Overhead 



100,000 times more powerful is not 100,000X faster! 



What does 100,000x more realistic look like? 

100,000 times more powerful can 
mean 100,000x more realistic 



What does 100,000x more realistic look like? 

3,100,000 

1980 Video Arcade Game 
1x ZiLOG Z80 @ 3.072 MHz 

3.1 megaFLOPS 



260,000,000,000 

2011 PC Video Game 
GeForce GT530 

260 gigaFLOPS 3,100,000 

What does 100,000x more realistic look like? 



Cardioid: IBM-LLNL Collaboration 

20,000,000,000,000,000 

260,000,000,000 

3,100,000 Sequoia computer 

Another 100,000x:  
Near-cellular resolution, real-time simulation of a beating human heart 

20 petaFLOPS 



Whole heart modeling at cellular resolution in real time 

Form multi-disciplinary, multi-institutional team (IBM-LLNL) 

Develop high resolution, realistic model of human heart 

Create Cardioid code to model electrophysiology of heart 

Leverage 20 PF Sequoia (Blue Gene/Q) resource 

Investigate development of arrhythmia   

§  Sudden Cardiac Arrest is a leading cause of death in the U.S. ~ 325,000/year 

§  Complexity of measured ECG makes identification of mechanisms difficult 

§  Fast, high-resolution model enables exploration of drug-induced arrhythmia 

Challenges 



Building a human heart model 

Raw	
  Data	
   Segmenta;on	
   Volume	
  Mesh	
   Fiber	
  Genera;on	
  

§  Import data from Visible Human Data Set 

§  Identify and partition ventricular segments 

§  Mesh the data at sufficient resolution 

§  Overlay fiber geometry  



The Cardioid Model on Sequoia 
 

Anatomical model of human heart 

96	
  racks	
  of	
  Blue	
  Gene/Q	
  in	
  Sequoia	
  

§  Complete heart is 370-700 million volume 
elements in a complex geometry 

§  Sub-domains of ~200-500 elements must be 
mapped to each of 1.6 M cores 

§  Cell model must be computed on every cell for 
each time step including reaction and diffusion 

§  Sub-domains must exchange boundary data on 
each time step 

§  Code is written from scratch to take advantage  
of BG/Q hardware 

§  Extensive algorithmic improvements 

Enables simulation of a realistic heart in real-time 



Tuning a heart code to computing hardware 

τ −1(Vm ) =
1+ e(25−Vm )/10 +80 / (1+ e(Vm+30)/10 )

562e−(Vm+27)
2 /240 +31

f (Vm ) ≅
aiVi

m

i
∑
1+ bjVj

m

j
∑

•  Two gating time constant functions have 
discontinuous first derivatives at -40 mV 

•  Close approximation would require high-
order polynomial  

•  Lower-order fit is sufficient to fit to sparse 
biological state used to construct the 
model 

Turning	
  this…	
   …	
  into	
  this	
  



Heart wedge simulation in presence of d-sotalol 

§  Drug presence modeled as block to hERG (I_Kr) channel 
§  S1-S2 stimulation introduces transmural reentrant pattern 

d-sotalol control 

S1 Stimulus S2 Stimulus 



Arrhythmia developing in a whole heart 



ECG of transmural re-entrant activation 

Kobza	
  R	
  et	
  al.	
  Circula;on	
  2005;111:e173-­‐e174	
  

ECG measured in patient with polymorphic ventricular tachycardia 

Time (s) 20 30 40 

ECG calculated from simulation with E-4031 



Pharmaceutical  
§  Drug safety and understanding mechanisms of 

cardiotoxicity (beyond single-cell effects!) 

§  New anti-arrhythmics and other cardiovascular drugs 

§  New drugs for heart failure and metabolic diseases 

§  Ability to “replay” experiments with different 
assumptions 

 
Medical devices 

§  Cardiac Resynchronization Therapy optimization 

§  Tissue-lead interface models 

§  New ablation techniques and instruments  
(including EM effects) 

§  New treatment approaches of atrial fibrillation 

Potential Applications (Near Term) 



 
 

Molecular! Protein function! Cellular! Tissue! Whole-organ!

Develop a near-cellular resolution, real-time simulation of a beating human heart 
connecting molecular kinetics to clinical outcomes 

Our goal is a predictive, mechanistic, heart model connecting 
molecular interaction to clinical outcomes 



High performance computing  is critical for developing a predictive 
biology capability to address growing crises in health and biosecurity 
 
§ Rapidly accelerating biosecurity threats 
§ Emerging infectious disease challenges 

Predictive 
Biology Large-scale 

Data Analytics 

High 
Performance 
Simulation 

Life Science 
Research and 
Clinical Data 

•  Today the average time to 
develop a new drug is ten 
years, at a cost of $B 

•  Drugs entering clinical trials 
fail > 90% of the time 

Validated simulations of complex biological systems will be an important tool in 
responding to future biological threats 
 



Predictive pharmacology – Simulations of small molecule cardio-toxicity 

Cardio-toxicity is the most frequent cause of drug 
failure. Organ-scale simulations will demonstrate 
and validate ability of simulation to predict effects. 
 
Partnership with Harvard (Loscalzo, Sorger) and UC 
Davis (Clancy) 
 
Pilot concept 

•  Expand Cardioid simulation physiology models  
•  Demonstrate effect of selected drugs on 

pathways 
•  Add mechanistic, atomistic scale 



 
Molecular modeling to determine drug dependent parameters 

ΔG	
  =	
  ~	
  9.5	
  kcal/mol	
  	
  	
  Kd	
  ~	
  1.3	
  x	
  10-­‐7	
  M	
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O’Hara-Rudy model adds substantial complexity to Cardioid 
<< Prev Figure 5 Next >>PMC full text: PLoS Comput Biol. May 2011; 7(5): e1002061.

Published online May 26, 2011. doi:  10.1371/journal.pcbi.1002061
Copyright/License ► Request permission to reuse

Figure 5

Schematic diagram of human ventricular myocyte model.

Formulations for all currents and fluxes were based either directly (gray) or indirectly (white) on undiseased
or nonfailing human experimental data. Model includes four compartments: 1) bulk myoplasm (myo), 2)
junctional sarcoplasmic reticulum (JSR), 3) network sarcoplasmic reticulum (NSR), and 4) subspace (SS),
representing the space near the T-tubules. Currents into the myoplasm: Na  current (I ; representing both
fast and late components), transient outward K  current (I ), rapid delayed rectifier K  current (I ), slow
delayed rectifier K  current (I ), inward rectifier K  current (I ), 80% of Na /Ca  exchange current
(I ), Na /K  pump current (I ), background currents (I , I , and I ), and sarcolemmal Ca
pump current (I ). Currents into subspace: L-type Ca  current (I , with Na  and K  components
I , I ), and 20% of Na /Ca  exchange current (I ). Ionic fluxes: Ca  through ryanodine
receptor (J ), NSR to JSR Ca  translocation (J ), Ca  uptake into NSR via SERCA2a/PLB (J ; PLB -
phospholamban), diffusion fluxes from subspace to myoplasm (J , J , and J ). Ca  Buffers:
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Next generation computing from IBM & NVIDIA: CORAL 

§  Anticipated computing advances move towards us closer to exascale computing 

§  Architectures are merging data analytics and simulation  

System	
  Feature	
   Summit	
  (2017)	
   Titan	
  (2013)	
  
Peak	
  System	
  Performance	
   >	
  150	
  PFlop/s	
   27	
  PFlop/s	
  
Peak	
  Node	
  Performance	
   >	
  40	
  TFlop/s	
   >	
  1	
  TFlop/s	
  
#	
  Nodes	
   >3400	
   18,688	
  
CPU	
   IBM	
  Power9	
   AMD	
  Opteron	
  (0.1	
  TFlop/s)	
  
GPU	
   NVIDIA	
  Volta	
   NVIDIA	
  Keplar	
  (1.3	
  TFlop/s)	
  
Memory	
  per	
  Node	
   >	
  512	
  GB	
   >	
  32	
  GB	
  
NVRAM	
  per	
  Node	
   800	
  GB	
   0	
  

Node	
  interconnect	
   NVIDIA	
  NVLink	
  (80-­‐200	
  GB/s)	
   PCIe	
  2	
  	
  (25	
  GB/s)	
  
System	
  interconnect	
   Infiniband	
  EDR	
  (>	
  TB/s)	
   Cray	
  Gemini	
  (	
  168	
  GB/s)	
  
Peak	
  Power	
  Consump;on	
   10	
  MW	
   8	
  MW	
  



Next generation computing from IBM & NVIDIA: 120+ Pflop/s 

§  Anticipated computing advances move towards us closer to exascale computing 

§  Architectures are merging data analytics and simulation  



Parting thoughts 

Factor of 104 or 105 in computational is transformational 
§  Renders earlier “impossible” algorithms tractable 
§  Allows rapid exploration of massive parameter space 
§  Enables investigation of cooperative effects 

Ability to create usefully predictive simulations requires qualified models  
with believable parameters 

§  Close collaboration (open communication) between clinicians, lab scientists 
and computational scientists 

§  Access to available data and experimental design 
 
Exciting advances in supercomputing capability are on the horizon 

§  Enables progress toward goal of predictive biology 
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Electromechanical models of the ventricles 

§  Electrophysiological model informs electromechanical model through Ca2+ current 
§  Reconstruction of fiber geometry in tetrahedral model based on DTMRI  
§  Solve motion of incompressible material using finite element approach 

Goal of building predictive model by increasing spatial 
resolution, mechanistic detail and speed of solutions 

Helm et al. 2005 
Constantino et al. 2010 
 



Preliminary view: high-res beating heart 

§  Contraction in ventricles coupled with 
electrophysiology 

§  Not yet real time 

§  Enables modeling of fluid flow in 
normal and diseased hearts 

§  Working to add atrial geometry and 
valves 



Questions we can address: 
 

§   What are the accessible conformations 
of this system? 

§   What contacts mediate a small 
molecule/macromolecular interaction? 

§   What are likely consequences of small 
molecule binding? 

20 ns for ~250,000 atoms 
72 hours on 512 Opteron processors 

Molecular methods can provide fundamental understanding  
of ligand interactions 



Molecular methods can be used to determine  
kinetic coefficients 

Membrane	
  permeability	
  
	
  

§  Potential mean force calculations  of             
 ligand across a lipid bilayer 

§  Lipid composition specific for organ 

§  Validated against experimental results 

DOPC	
  



DOPC	
  

Molecular methods can be used to determine  
kinetic coefficients 



   How will HPC impact the use of non-clinical trials? 

Hugo M. Vargas, PhD, DSP 

Scientific Director 

Integrated Discovery & Safety Pharmacology 

Comparative Biology & Safety Sciences 

10-Sep-2015 

The Future Role of High 
Performance Computing in 
Medical Product Decision-

making 
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Outline 

 Current Paradigm of Drug Development 

– Focus: Drug Discovery & Preclinical Development  
 

 HPC: Opportunities and Challenges 

 

 



 Albert Camus (1913-1960) 

– Author & Playright 

– Nobel Prize (1957, Literature) 

• “…clear-sighted earnestness 
illuminates the problems of the human 
conscience in our times” 
 

 Philosophical Conflict: 

– “The mundane” vs 
            “The unthinkable” 

 

“Should I kill myself, or have a cup of coffee?” 
 

 HPC in Drug Development: A Powerful Tool, but 
How to Implement?  

 



Non-clinical Drug Safety Evaluation (2015): 
The Regulatory Landscape 

Bass AS, Vargas HM, Valentin JP et al. (2011)  J.Pharmacol. Toxicol. Methods  64: 7-15 

2011 - 2015 

CiPA 
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In Silico Opportunities in Drug Discovery: 
Nonclinical Phases (small molecule) 

HPC in Pharma Industry White Paper (Tata Consultancy Services) 
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HPC:  Where to Apply? 
Example: CV/QT Risk Assessment (small molecule) 

Slide courtesy of J-P. Valentin (UCB) 
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Cardiac Safety Assays: 
Bridging the Gap Between Models & Clinical Translation 
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Heijman et al.  Cardiac Safety Assays.  Curr. Opin. Pharmacol. 15:16-21 (2014; modified) 

Heijman et al. (2014) 

Heijman et al. (2014) 

Heijman et al. (2014) 

Are these new 
assays relevant 
for cardiac 
safety testing? 



Application of SC-Derived CM to CV 
Safety Assessment:  Key Points (SOT-2014) 

 Advantage:  Human cardiac tissue surrogate 

– Potential for better hazard ID, risk assessment & translation 

– Ability to derive risk assessment from susceptible subpopulations: 
genetic/disease-types 
 

 Challenge: Scientific validation  Dictate utility & application 

– SC-CM model: “leading” or “supporting” role 

– Fit for Purpose: needs to be defined 

 

 Issues: how do SC-CM perform? 

– Electrophysiology (QTc; QRS) and Contractility effects? 

• Sensitivity, specificity; predictive value 

– Cell type (iPSC vs ES-derived): is one type better? 

– Neonatal vs adult myocyte phenotype: cell maturity factor? 

– Methodology and endpoints: sensitivity? 

• action potential (traditional) vs field potential (multi-electrode array) 
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Application of SC-Derived CM to CV 
Safety Assessment:  Key Points (HPC-2015) 

 Advantage:  Human cardiac tissue surrogate 

– Potential for better hazard ID, risk assessment & translation 

– Ability to derive risk assessment from susceptible subpopulations: 
genetic/disease-types 
 

 Challenge: Scientific validation  Dictate utility & application 

– SC-CM model: “lead” or “supporting” role 

– Fit for Purpose: needs to be defined 

 

 Issues: how does SC-CM perform? 

– Electrophysiology (QTc; QRS) and Contractility effects? 

• Sensitivity, specificity; predictive value 

– Cell type (iPSC vs ES-derived): is one type better? 

– Neonatal vs adult myocyte phenotype: cell maturity factor? 

– Methodology and endpoints: sensitivity? 

• action potential (traditional) vs early-after depolarization (EADs), etc, etc. 
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10 

Cardiovascular Safety 
Pharmacology: A “2020” Vision 

 

An Example of HPC? 



Relationship between Cardiac Action 
Potentials and QT Prolongation 

11 



4th Annual Conference on Drug Discovery and Clinical Development 

in India | November 14-18, New Delhi, India 

ICH S7B/E14 Guidelines: 
Intended & Unintended Consequences 

 Successful:  no drugs with unrecognized risk being 
approved or removed from the market 

 

 Negative impact on drug development 

– Premature discontinuation due to hERG or QT “signal” 

• (Inaccurate) perception of risk leading to drug 
discontinuation 

- Estimates of up to 60% 

– Development burden: increased costs; labeling 

– Many potentially good compounds never get evaluated in 
humans due to a hERG effect 
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Comprehensive In Vitro Proarrhythmia Assay: 
Four Components 

Evaluation of 

Clinical Drugs for 

Proarrhythmic 

TdP Liability  

Drug Effects    

on Multiple 

Human Cardiac 

Currents 

In Silico 

Reconstruction                       

Human Ventricular 

Cellular 

Electrophysiology 

 In Vitro Effects          

Human Stem-

Cell Derived 

Ventricular 

Myocytes 
High Risk 

 

 

 

Intermediate  

Risk 

 

 

 

 

Low Risk  



Core Component I:  Voltage Clamp Studies, 
Human Currents, Heterologous Expression Systems 

Ion Channel Working Group (SPS): 

- Develop seven protocols; standardize testing 

- Outward currents: IKr (hERG); IKs (KvLQT1/KCNE1), Ito (Kv4.3) 

- Inward currents: IK1 (Kir2.1); ICa-L (Cav1.2), INa (NaV1.5; peak & late) 

 

- Establish best practices, reduce bias and 

  variability, enable comparisons of automated 

  platforms across laboratories 

      

-  Information on kinetics-, voltage-, and use- 

   dependence to parameterize models 

   (hERG essential)     

14 

Robust characterization of drug effects on human currents    

enables in silico reconstructions of integrated responses 
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+      = 

Core Component II:  Computer Reconstructions of 
Drug Effects on Human Cellular Electrophysiology 

In Silico Group (FDA): 

- Multiple currents integrated to describe cellular electrophysiologic effects   

- Ability to elicit changes in repolarization instability, early  after- 

  depolarizations, reduced upstroke velocity using select model 
  (modified O’Hara-Rudy model)  

- Rank integrated responses; compare with clinical examples of TdP risk 
  (low to high risk)  
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 Myocyte Group (HESI): 
Verification of in silico 

reconstructions with well 

characterized human stem-cell 

cardiomyocytes  

13 Site Pilot Study Ongoing             

- Microelectrode array (MEA, field 

potential duration, 4 platforms) 

- Voltage-sensing optical (VSO, 4 

platforms) 

- 3 myocyte types 

 

8 Blinded Compounds                       

- 4 to calibrate sensitivity 

     (IKr, IKs, INa, ICa) 

- 4 as pilot test set                            
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Core Component III:  In vitro Effects, Human Stem 
Cell-Derived Cardiomyocytes 



Identifying Different Phenotypes: 
Predicting Ventricular Arrhythmia 

TdP Likely 

TdP 
Possible 

hERG 
Block 

QTc 
prolongation 

CIPA Assays Must Differentiate: 

• hERG blockers with QTc 
Prolongation & associated with 
TdP (1) 
 

• hERG blockers with QTc 
Prolongation BUT NOT 
associated with TdP (2) 
 

• Drugs  with no-direct ion channel 
effects with modest QTc 
Prolongation (3) 
 

• Drugs with low pro-arrhythmic risk 
(3; 4-not shown) 

3 

2 

1 

Slide courtesy of D. Leishman (Lilly) 



Take Home Points 

For External Use 18 

 HPC:  New Tool with Great Potential 

– How to apply to drug development? 

– Pro-arrhythmia Risk Assessment (CiPA): Test Case? 
 

 Is the Juice Worth the Squeeze? 

– Validation of Models: What is known? What is needed? 

– Resources needed:  In silico/HPC/modelling 

• Plus: SME (subject matter expert); multi-lingual 

– How to establish confidence in the output? 

• For business decisions and for regulatory decisions 

• “fit for purpose" 

– Will HPC-derived data supplant/replace current assays used for 
nonclinical (and clinical) safety assessment? 

• E.g., isAPD (human APD model); Cardioid Project (human ECG model) 
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Thanks for your Attention! 




